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Abstract. Steiner (1998) argues that the mathematical methods used to

discover successful quantum theories are anthropocentric because they are
“Pythagorean”, i.e., rely essentially on structural analogies, or “formalist”,

i.e., rely entirely on syntactic analogies, and thus are inconsistent with natu-

ralism. His argument, however, ignores the empirical content encoded in the
algebraic form and geometric interpretation of physical theories. By arguing

that quantum phenomena are forms of behaviour, not things, I argue that

developing a theory capable of describing them requires an interpretive frame-
work broad enough to include geometric structures capable of representing the

forms, which set theory provides, and strategies of algebraic manipulation that

can locate the required structures. The methods that Steiner finds so suspect
or mysterious are entirely reasonable given two facts:

(1) discovering new theories requires algebraic and structural variation of
old theories in order to access new forms of behaviour; and

(2) recovering the (algebraic and geometric) form of the prior theories is

necessary to retain their empirical support.
Accordingly, I argue that the methods used to discover quantum theory are

both rational and consistent with naturalism.

1. Introduction

In his (1998) book The Applicability of Mathematics as a Philosophical Problem,
Steiner presents the following question concerning the applicability of mathematics:
Why should it be that highly abstract mathematical methods, with no clear input
from the world, allow us to discover the basic principles of the universe? This is
a version of Wigner’s famous problem concerning the “miracle of appropriateness
of the language of mathematics for the formulation of the laws of physics” [29,
p. 14]. The problem as posed by Wigner is rather vague and opinions expressed
in the literature have differed with respect to whether it really is a problem (cf.,
[9, 15]). I believe, however, that another more pointed question that Steiner poses
calls strongly for a answer:

Is there a physical basis for the abstract
mathematical analogies used to discover quantum theories?

The question here focuses on whether a case can be made that there is a physical
basis for the success of purely mathematical arguments in discovering deep, new

2010 Mathematics Subject Classification. Primary 00B13 Secondary 01-06.

1



2 ROBERT H. C. MOIR

physical principles. Steiner says that no such basis exists, and concludes that the
success of these methods suggests quite the contrary, viz., that, in fact, natural
theology could provide the true explanation. Contrary to Steiner, I will suggest
that the answer given to this question depends on what kind of knowledge of the
world physical theories are taken to provide.

Views about the nature of physical laws can usually be divided into two broad
categories: those that regard laws as summaries of sensory experience; and those
that regard laws as articulating natural tendencies of action or interaction for physi-
cal entities or their essences. Views in the former category take laws to be empirical-
phenomenological : laws correlate experiences, properties or behaviour but do not
provide insight into ontology or the nature of an underlying reality. This class
of views is compatible with most forms of instrumentalism and includes, of course,
Hume’s view of causation and positivistic views of laws, as well as those that accept
Humean supervenience. Views in the latter of the two categories take laws to be
formal-ontological : laws express the manner in which actual physical entities tend
to behave or interact. The appellation ‘formal’ is added, first of all, because the
entities described by or included in laws are in general unobservable and, hence,
may only be characterized formally. Second of all, the inclusion of ‘formal’ is in-
tended to include views where laws are not thought true of the world directly, but
only of abstract models of the world, as well as to include views that take laws to
express relations between essences of physical entities.. This class of views, which
is compatible with most forms of realism, thus includes Aristotelian physics, where
definitions express relations between essences of material substances [16] as well as
views that take laws to apply only ceteris paribus, e.g., [6].

Let us now consider the implications of the proven success of purely mathe-
matical analogies in the discovery of the laws of quantum theory given the above
two interpretations of the epistemological status of scientific laws.

On a formal-ontological view of the knowledge that laws provide, the success
of abstract mathematical analogies, which have no physical interpretation, implies
that reasoning using purely mathematical structures and constructions can allow
us to learn what kinds of things occupy the universe and how they behave. This is
highly suggestive of a deep connection between physical ontology and mathemat-
ical structures, which allows mathematical analogies to be successful in scientific
discovery. Consequently, a formal-ontological view of laws supports an explana-
tion of applicability in terms of Pythagoreanism, where the “being” or “essence”
of things in the world is understood to be mathematical. If the things in the world
just are mathematical, actually or essentially, then it is not a surprise that purely
mathematical reasoning could be so successful.1

On the other hand, if one adopts an empirical-phenomenological view of the
knowledge provided by scientific laws, the success of abstract, purely mathematical
arguments implies that reasoning using purely mathematical structures and con-
structions can allow us to probe deeper and deeper into the nature of the world

1I do not mean to suggest that a Pythagorean explanation is the only possibility for those
who adopt formal-ontological views of laws, I merely suggest that it is the most natural one.
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of experience. This is highly suggestive of a deep connection between the struc-
ture of the world of experience and mathematical structures, implying then that
the operations of our mind are somehow tuned to the exploration of the deepest
aspects of the phenomenal world, far beyond immediate experience. Consequently,
an empirical-phenomenological view of laws supports an explanation of applicabil-
ity in terms of natural theology, in the following sense: the world appears to be
structured in such a way that the tools and methods of mathematics, themselves
products of the human mind, are all that is required to probe the deepest aspects
of nature, which is suggestive of a divine hand and a special place for humans in
the Great Chain of Being. Although not necessarily for these reasons, it is an ex-
planation of the success of strategies of mathematical analogy in physics in terms
of natural theology that Steiner favours.2

Although explanations in terms of Pythagoreanism and natural theology are not
the only ones possible here, we may see that common views of the knowledge that
scientific laws provide (formal-ontological and empirical-phenomenological) point
strongly in the direction of anti-naturalistic explanations of the success of the ab-
stract mathematical methods used to discover quantum theories, as Steiner argues.

In this paper I will advocate for an alternative view of the knowledge provided
by scientific theories, viz., that laws specify abstract patterns or forms of behaviour
that are exhibited by certain phenomena under certain conditions or circumstances.
The view I intend here cuts across the two categories of views concerning the nature
of laws presented above. On the one hand it views laws as formal in both the
sense that laws, in general, are not considered true of the world directly, but only
of abstract models of the world, and in the sense that unobservable phenomena
can be characterized formally. On the other hand, the formal characterization
of unobservable phenomena is phenomenological rather than being ontological in
the usual sense. This is because what are normally taken to be “entities” are
understood merely as forms taken on by phenomena under certain circumstances,
rather than as externally existing objects. Thus, the view intended here is not only
phenomenological in the usual sense of “phenomenological theories” but also in a
manner that includes “metaphysics” in the sense of existence of unobservable forms
of behaviour that can be characterized formally. I will argue that on this formal-
phenomenological construal of the knowledge provided by the basic equations of a
scientific theory, abstract mathematical analogies are actually necessary to adapt
or generalize theories to describe new phenomena. As a consequence, I will argue
that, on this reading of the kind of knowledge provided by scientific theories, the
evidence from physics that Steiner presents actually supports naturalism.

2. Steiner’s Argument Against Naturalism

Steiner [25] argues that two strategies of mathematical analogy, which he calls
“Pythagorean” and “formalist”, have played a central role in the discovery of theo-
ries in physics since 1850. In particular, he argues convincingly that these analogical

2I do not mean to suggest that an explanation in terms of natural theology is the only
possibility for those who adopt empirical-phenomenological views of laws, I merely suggest that

it seems to be the most natural one.
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strategies were crucial in the discovery of theories in (non-relativistic) quantum me-
chanics, quantum field theory and particle physics, and that similar methods played
a less pronounced role in the discovery of earlier theories by Newton and Maxwell.
On the basis of his examination of historical evidence, he draws the conclusion that
the success of these strategies of mathematical analogy presents a significant chal-
lenge to naturalism. Steiner [25, p. 60] summarizes his argument against naturalism
as the conclusion of the following two premises:

I. Both the Pythagorean and formalist strategies are anthropocentric; nev-
ertheless,

II. Both Pythagorean and formalist analogies played a crucial role in the
fundamental physical discoveries in the twentieth century.

In this section we will examine some of the key features of Steiner’s arguments for
these two premises.

These terms “Pythagorean” and “formalist” pick out, respectively, two different
types of mathematical analogies:

(i) structural analogies, i.e., those based on similar mathematical structure;
(ii) syntactic analogies, i.e., those based on equations with similar form.

By “Pythagorean” analogies, Steiner means structural analogies that “were then
inexpressible in any other language but that or pure mathematics” [25, p. 3].3 By
“formalist” strategies, then, he intends syntactic analogies without regard to the
mathematical meaning of the equations.4 The problem presented by the success of
“Pythagorean” analogies is that with no evident connection to a physical motiva-
tion for the strategy, it is simply a relation between mathematical structures that
is allowing the discovery of deep new theories of the world. Successful “formalist”
strategies are all the more problematic since they are determined solely by the form
of the equations, which ultimately we choose, and is obviously not determined by
the physical world. The evidence that the analogies used by physicists to discover
quantum theories were indeed “Pythagorean” or “formalist” in the above senses
comes from the consideration of detailed outlines of the actual arguments physi-
cists used to motivate new equations. We now consider an example of each of the
two strategies.

One simple, though important, example Steiner provides is that of an argument
used by Schrödinger [24] to derive the famous equation bearing his name. We
consider this argument in detail because we will revisit it later. The following is
a version of Steiner’s account [25, pp. 79-80] of Schrödinger’s reasoning. First, in
analogy to optical waves, Schrödinger assumes that a particle of constant energy E
can be described in terms of a wave with energy E = ~ν, where ν is the frequency,

3Steiner makes a big point of the significance of the physicists’ understanding of what they
were doing. This is less significant for my purposes because I am arguing that their methods are
simply extensions of strategies of discovery that had been successful in the past. My concern is

making a convincing case that we can understand their methods as continuous with prior strategies

that do have a sound physical basis, which makes it relatively unimportant whether or not they
understood what that basis was.

4I introduce the two kinds of analogy as “structural” and “syntactic” to separate the com-
pelling evidence Steiner actually presents from the loaded evaluation implied by calling them

“Pythagorean” and “formalist”.
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which yields the wavefunction

(2.1) ψ(x, y, z, t) = f(x, y, z)e−iE
~ t.

The governing wave equation for this function is then

(2.2)

(
− ~2

2m
∇2 + V (x, y, z)

)
ψ = Eψ,

which we recognize as the time-independent Schrödinger equation for a free particle.
Then, Schrödinger differentiates the expression (2.1) for the wavefunction which
yields, after rearranging constants,

(2.3) i~
∂ψ

∂t
= Eψ.

Note that the validity of this equation can be construed as justifying an interpre-
tation of the energy E in terms of the “time-evolution” operator i~ ∂

∂t . Finally,

using an analogy to the classical expression E = p2

2m + V for the total energy in
terms of kinetic and potential energy, resulting in the momentum p being inter-
preted in terms of the “space-evolution” operator i~∇, the governing equation (2.2)
motivates the replacement of E in (2.3) to obtain

(2.4) i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + V (x, y, z)

)
ψ,

which we recognize as the time-dependent Schrödinger equation for a free particle.

The “Pythagorean” reasoning, Steiner observes, enters in two main places in
this argument. First of all, the argument begins with an analogy to classical optics,
yielding a wavefunction (2.1) and corresponding governing wave equation (2.2). The
argument then abstracts away from this intuitive optical analogy to obtain a wave
equation (2.4) that has no analogue in classical optics and where purely notational
complex numbers in the classical context, i.e., in equation (2.1), become an essen-
tial component of the resulting wave equation (2.4). This is “Pythagorean” because
it is the mathematical expression (2.1) that becomes the basis for the derivation of
the wave equation and not its physical meaning under the optical analogy. Second
of all, the wave equation (2.4), which was derived using solutions of the special
form (2.1), is then considered to be generally valid, which allows superpositions of
waves as physical solutions, not valid in the optical analogy. Moreover, if (2.4) is
taken to continue to be valid with a time varying V , then the equation permits
solutions that do not exhibit ordinary “wavelike” characteristics at all, instead be-
ing “smeared out” mass distributions. Steiner also makes the point that there is
a “formalist” element in the argument as a result of taking an equation that was
derived assuming constant energy to then be valid for cases where energy is not
constant.

Steiner provides many examples of “Pythagorean” reasoning such as this, which
base analogies on mathematical structures and not physical arguments. Many of
these are from particle physics which rely heavily on structural analogies involv-
ing symmetry groups. Steiner also provides another class of examples that are
even more problematic from a naturalistic point of view because they are analo-
gies based on the form of the notation alone. A striking example of such formalist
analogies discussed by Steiner [25, pp. 157-160ff.] is Dirac’s “factoring” argument
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to derive the famous equation bearing his name. After attempts failed to de-
rive a valid equation for the electron by extending the classical-quantum analogies

(E → i~ ∂
∂t ,p → i~∇) from the classical energy formula E = p2

2m + V to the rela-
tivistic version

(2.5) E2 = p2 −m2,

a substitution which results in the Klein-Gordon equation, Dirac tried an approach
based on the form of (2.5). Dirac reasoned that for there to be a valid equation
for the electron, first order in space and time variables, it must be the quantum
correlate of a factorization of E2 − p2 + m2, i.e., where E and p are interpreted
as operators. Adopting the ansatz that such a factorization existed, Dirac derived
the relationships between the coefficients of the factors that had to obtain for the
factorization to be valid. He then looked for mathematical structures that could
solve the equations, finding that four dimensional spinor fields, with the coefficients
interpreted as 4×4 matrices, worked. This allowed the derivation of the Dirac equa-
tion, and led Dirac to predict the existence of the positron.

Thus, in this case it was not an analogy between two mathematical structures
that allowed the derivation of new laws, it was an analogy based purely on the form
of an equation that allowed the discovery of new mathematical structures that could
be the subject of new laws. In both these two cases, it is clear that mathematical
analogies are driving the arguments. These two cases provide an illustration of the
kind of compelling evidence Steiner presents to justify the second (II.) of his two
main premises above. Addressing the matter of what to make of this evidence and
whether there is any naturalistic justification for these methods will have to wait
until the next section.

Since empirical or physical considerations appear to play no role in these ar-
guments, and because Steiner argues that “there is no naturalistic definition of
‘mathematics,’ ” [25, p. 108] Steiner concludes that the evidence from physicists’
methods on its own, i.e., without regard to the nature of mathematics, is most
suggestive of a Pythagorean explanation. The explanation of the success of these
methods, then, being that pure mathematical analogy is so successful in theory dis-
covery because the world is mathematical; since the world is actually or essentially
a mathematical structure, careful mathematical analogies based on known struc-
tures and equations can help us to find the deeper mathematical structures that
nature instantiates. Steiner advises against a Pythagorean explanation, however,
based centrally on his contention that, though it is purely mathematical reasoning
that allowed the discoveries, mathematics itself is anthropocentric.

This leads us to the reasons underlying the first (I.) of Steiner’s two main
premises stated above. Steiner’s argument for the anthropocentrism of mathemat-
ics, and hence against both Pythagoreanism and naturalism, is based centrally on
the following claim:

• What counts as mathematics is determined by considerations of beauty
and convenience; that is to say, there is no objective criterion for what
counts as a mathematical structure.
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Steiner does not devote much of the book to supporting this claim, since most of
the effort is spent in making an airtight case for premise II. Let us then consider
the sort of evidence he provides.

Steiner provides evidence that it is the human aesthetic sense that determines
what counts as mathematics. The evidence consists primarily of the recurring ex-
ample of how the game of chess and its “theorems” do not count as mathematics,
together with a selection of quotes from von Neumann and G. H. Hardy, who
emphasize the character of mathematics as a creative art and how the selection
of mathematical structures for study is primarily aesthetic [25, pp. 63-66]. The
authority of these twentieth century mathematicians, working in a time where ab-
stract algebra began to dominate the study of mathematics, is supposed to make
reasonable the claim that all of mathematics is driven by aesthetic concerns, not
objectively determined criteria. The evidence for convenience being the other sig-
nificant determinant of what mathematics consists in is somewhat more varied,
being based on how certain mathematical concepts, i.e., complex numbers, poten-
tials and Taylor series, that were historically, or are fairly generally in the case
of Taylor series, introduced to aid calculation but end up having physical signifi-
cance.5 Although this is a paucity of evidence for a claim as grand as “mathematics
is anthropocentric,” we may grant that if all mathematics derives primarily from
the human aesthetic sense, and not by any objective criterion, and secondarily only
from computational convenience, there is a strong case for anthropocentrism of
mathematics.

Based on his evidence for premises I. and II. above, Steiner concludes that
“the truly great discoveries in contemporary physics were made possible only by
abandoning—often covertly and even unconsciously—the naturalistic point of view”
[25, pp. 59-60]. And since Steiner argues that because what determines what counts
as mathematics is determined by us, the success of “Pythagorean” and “formalist”
strategies is at odds even with Pythagoreanism, making the evidence compatible,
inter alia, with natural theology. This follows, as was intimated above, because
the success of mathematical analogies in physics, given that mathematics is anthro-
pocentric, is quite suggestive of it being a divine contrivance that the world has
been constructed in a way that the conceptual frameworks we develop because of
their apparent beauty to us are tuned to the discovery of nature’s deepest laws.

One final point that bears mention is Steiner’s point that it is a “global strat-
egy” that was successful in discovering the laws of modern physics using purely
mathematical analogies. There are far more examples of failure using mathemati-
cal analogies than successes. But this does not affect Steiner’s argument given that
it was a mathematical taxonomy that supported the analogies that were successful.
It was the overall scheme that was successful, not any particular instance, and led
successfully to valid new laws in a relatively short period of time.

5He also criticizes the practice of introducing perturbation expansions of equations in param-
eters previously taken to be constant as a “fiction” where the “formalism [is] leading the scientist”

[25, p. 68]



8 ROBERT H. C. MOIR

3. Problems for Steiner’s Argument from the History of Analysis

We now turn to consider some of the problems with Steiner’s argument. I will
argue that there are two general problems with his argument that derive from ig-
noring two important lines of evidence from the history of mathematics and physics,
the first of which is taken up in this section and the second in the section following:

(1) In the period from the 17th to the (early) 19th century, the development
of mathematics and physics was closely interdependent; and

(2) Prior physical theories are, and indeed must be, continually used as a
basis for the discovery of new theories, which places strong constraints on
the kinds of mathematical structures and methods available to formulate
new theories.

I will argue that the matter raised by (1) shows that there are objective origins for
mathematical structures and that the matter raised by (2) shows, inter alia, that the
structures needed to formulate new theories were neither arbitrary nor determined
by criteria of aesthetic appeal or convenience. These considerations, therefore, serve
to undermine the claim that mathematics is anthropocentric, thereby undermining
the challenge to naturalism posed by Steiner’s argument. Indeed, I will argue in
the next section that the structural and syntactic analogies essential in the discov-
ery of modern physical theories, without their “Pythagorean” or “formalist” sheen,
can be provided with a naturalistic motivation, which I will argue can lead to an
explanation of the physical basis for mathematical analogy in theory discovery.

Because the calculus was not given a rigorous foundation until the late nine-
teenth century, much of mathematical analysis had to look to intuitive, analogical
and physical reasoning to justify its results and methods. This led to a situation
from the sixteenth through the middle of the nineteenth century where the develop-
ment of mathematics was driven in large measure by abstract treatment of scientific
problems and phenomena [1, 18, 19, 26]. At a foundational level, both Newton’s
and Leibniz’s methods are based on a intuitive notion of continuum, with Newton’s
concept rooted in our intuition of flow or continuous motion of points in space [5,
82],[12, p. 97]. Importantly, physical considerations often played a central role in
the development of methods of solution of ordinary differential equations (ODE)
and partial differential equations (PDE); indeed, the first problems involving partial
differential equations were based in the study of continuum mechanics [1, pp. 336-7].
The influence of physics on mathematics is also reflected in the fact that the great-
est contributors to mathematics in the seventeenth and eighteenth centuries were
just as much, or even more, influential as scientists than as mathematicians, exam-
ples including Descartes, Newton, the Bernoullis, Euler, and Lagrange, to name a
few. Perhaps the strongest indication of the interdependence of mathematics and
physics in this period is reflected in the fact that the lack of a rigorous foundation
forced the use of physical intuition and accordance with phenomena as substitutes
for mathematical proof [11, p. 110],[19, p. 395,pp. 617-8].

The importance of the reliance on physical intuition, physical meaning, and
physical phenomena for the justification of mathematical arguments in the devel-
opment of mathematical analysis, as well as how important physics was as a source
of problems and methods in analysis, provides very strong evidence against Steiner’s
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claims of the non-objective origins of mathematics. The development of analysis is
seen to be inextricably entangled with physics and experience of natural phenom-
ena. The historical evidence also shows that the very development of the kinds of
equations central to the formulation of physical laws, viz., differential equations, as
well as many of their methods of solution, arose from the desire to treat physical
problems mathematically. Newton’s approach to the calculus in terms of fluxions
(time derivatives of quantities in motion) led naturally to quadrature problems re-
lating fluxions of two quantities that were to be solved by determining how the two
quantities were related, which expresses the elementary problem of solving a(n ordi-
nary) differential equation [1, p. 326]. More generally, physical considerations were
central in the development of techniques of solution of ODE [1, p. 336]. In the case
of PDE, they originated in the study of continuum mechanics, as mentioned above,
and later saw significant developments come from potential theory, which, far from
being determined primarily by computational convenience as Steiner claims, arise
from consideration of the attractions and repulsions of discrete mass points [1,
p. 337].

That ODE and PDE as classes of equations, and to a large degree their methods
of solution, have origins in physical intuition, physical interpretation, or experience
of physical phenomena, shows quite clearly that the theory of differential equa-
tions is neither determined primarily by aesthetic predilections of human beings
nor primarily by computational convenience. This also indicates that differential
equations that could be interpreted physically were more likely to be developed and
studied throughout the development of analysis. And since differential equations
specify or constrain the spatial and temporal variation of the quantities they relate,
differential equations encoded6 the form of behaviour of the natural phenomena to
which they could be applied. In turn, the solutions to these equations provided
an abstract representation of forms of behaviour exhibited by natural phenomena
under the conditions that a differential equation and its solutions could be applied.
In this way, the equations of continuum mechanics, including elasticity theory, plas-
tic deformation and fluid mechanics, arguably originate in abstraction of forms or
patterns of behaviour in experience. They are clearly not to be regarded as “true”
in the sense of an ontologically correct specification of the dynamics of matter, but
they do characterize the form of behaviour of certain kinds of matter under cer-
tain ranges of physical conditions. This shows that the original phenomenological
theories of physics naturally lend themselves to a formal-phenomenological inter-
pretation of the sort discussed in the introduction.

Now, the notation developed to express and manipulate differential equations
is not entirely arbitrary either. The Leibnizian notation for differentials, deriva-
tives and integrals allows one to reason intuitively in terms of tiny changes, rates
of change as ratios of such changes and integrals as sums of tiny parts. Hence,
the notation makes reasoning using physical intuition quite natural. This is why
the physical arguments in the derivation of differential equations used and continue

6In the interest of brevity I will not consider in detail the sense of “encode” I intend here. It

will suffice for our purposes to specify that it is the flows that dynamical (hyperbolic, parabolic,
ordinary) differential equations pick out which are the forms or patterns of behaviour that the

equations encode.
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to make use of differentials (see, e.g., [4],[10]). The dominance of the algebraic
Leibnizian notation in differential equations is no accident.

For differential equations, the notation reflects both the mathematical and
physical meaning of the equations. For example,

d2x

dt2
=
F

m

reflects the mathematical meaning that the curvature of x(t) with respect to time
is equal to the ratio of F to m; it also reflects the physical meaning of Newton’s
second law as “a change in motion is proportional to the motive force impressed
and takes place along the straight line in which that force is impressed” [23, 416].
This also means that a (large or small) change of F (x) from one function to an-
other, or m from one value to another, has a definite effect on the mathematical
structure defining the dynamics, by changing the direction or the magnitude of the
vector field. With an understanding of the physical meaning of the equation, then,
it is possible to reason about the physical effects of variations or changes to the
differential equation. If we regard the flow of the differential equation, i.e., the con-
tinuous time transition map on phase space, as characterizing the form of behaviour
the equation picks out in general, then understanding the physical meaning allows
reasoning about what the effects are of variations of the equation on the form of
behaviour. In this way, the algebraic form of differential equations covaries with
their mathematical meaning in terms of functions on geometric spaces, allowing
translation of algebraic arguments into physical ones.

Thus, we can regard the Leibnizian notation for the calculus as being the so-
lution to an important practical problem, viz., how can we develop a symbolic
notation that humans can easily manipulate in such a way that understanding
simply the meaning of the symbols allows insight into abstract representations of
physical behaviour. This might appear like a matter of convenience, but when
we realize that without this property of the notation it would not be feasible to
successfully use differential equation methods widely in the manner required by
mathematical physics, we see there is an objective constraint that is driving the
choice of notation. This is to say, that being able to find such a sort of notation
or not being able to do so marks objectively the difference between methods that
permit the kind of sophisticated intuitive reasoning that has been essential in the
historical development of physics and methods that would not allow physics as we
know it to develop. Thus, the choice of notation is determined in large measure
by what kinds of inferences it renders feasible, i.e., possible in the actual world,
and not merely by concerns of practical convenience. Indeed, this is supported by
the limited developments in Britain from those who pursued Newton’s geometric
approach to the calculus compared to the fruitful developments on the Continent
resulting from the use of the algebraic Leibnizian notation. As a simple example
to drive the point, try doing complex arithmetical calculations in Roman numerals
rather than using positional notation—the notation has a strong impact on what
inferences are feasible, i.e., actually possible rather than simply possible in principle.

Viewed in terms of feasible access to knowledge of forms of behaviour of nat-
ural phenomena, then, neither the structures that abstract patterns of physical
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behaviour nor the notation we choose to present those abstract patterns are arbi-
trary nor determined solely by beauty and convenience. The significance of this
for our purposes is that the mathematical structures, i.e. solutions of differential
equations, are dictated by the form of behaviour of phenomena; and that the no-
tation and methods are dictated, centrally, by the requirement of feasible means of
physical insight and the study of the mathematical structures that represent the
phenomena. The point here is that it is the combination of the type of equations,
the physical representation of their mathematical meaning and the specialized no-
tation, that allowed physicists to feasibly access mathematical representations of
such a wide variety of forms of behaviour. In this way, differential equations and
their theory as developed in the seventeenth to mid-nineteenth centuries were a so-
lution to a central practical problem for science: How can we develop mathematical
structures and methods that allow us to extend and deepen our knowledge of the
behaviour of natural phenomena. Beauty and convenience were certainly relevant
constraints, but the primary constraint was feasible insight into forms of physical
behaviour.

4. A Naturalistic Understanding of the Content and
Function of Theories and Methods of Their Discovery

The evidence provided in the previous section shows the distinct sense in which
the origin and the content of classical analysis, particularly differential equations,
was abstract representation of forms behaviour of phenomena, which could then,
inter alia, be studied to gain insight into behaviour.

The theories so formed initially involved phenomena that could be directly ob-
served, like the rigid motion of bodies, static fluids, fluid flow, elastic behaviour of
solids, motion of celestial bodies, etc. These are the sorts of phenomena covered
by differential equations in the manner considered in the previous section. As phe-
nomena became more removed from experience, however, mathematical analogies
to prior theories played an increasingly important role.

One example of this was the development of a theory of light as a transverse
wave in a medium, the luminiferous aether, that was consistent with experiment.
After empirical evidence from Arago led to the hypothesis of light as a transverse
wave, a model of the aether as an elastic solid was sought, since it was known that
an elastic solid allows transverse waves [28]. Thus, an analogy was drawn to a
phenomenon, i.e., elastic solids, for which equations of motion were known, in the
interest of developing an equation of motion for light. By deriving physical bound-
ary conditions for real elastic solids, Green was able to show that modeling the
aether as an ordinary elastic solid was not consistent with experiment [28]. This
then initiated the search for variations of the equations of an elastic solid that were
empirically adequate, which was accomplished first by MacCullagh [28].

This episode from optics shows how a mathematical analogy was used to deter-
mine equations of motion that governed the form of behaviour of light waves, which
are not directly observable. The approach started with known equations that admit
transverse wave solutions and then required variation of these equations to extend
physical theory to describe the sort of transverse waves exhibited by light. Just
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as in the case of ordinary phenomenological theories, these equations are obviously
not ontologically correct, since we know now that even the description of light as
an electromagnetic wave is a macroscopic approximation. The analogical strategy
did, however, succeed in producing equations that capture dominant aspects of the
way that microscopic light waves behave. A similar, but more involved, strategy
was employed by William Thomson and Maxwell to develop equations of motion
governing electrical and magnetic phenomena [7]. Independently of the mechanical
and aether models Maxwell used in the process of finding a consistent set of equa-
tions that agreed with experiment, the result were equations that captured more
and more aspects of the behaviour of electric and magnetic phenomena, culminating
in equations that governed the behaviour of electromagnetic fields and the waves
they permit.

The key point here is the following. If we continue to understand the func-
tion of differential equations in science as specifying abstract patterns or forms of
behaviour that certain physical phenomena exhibit under certain circumstances,
then mathematical analogies play a clear and rational epistemic role. Starting with
differential equations we know are physically valid for phenomena under certain
conditions and admit solutions with behaviour similar in relevant respects to that
of some new phenomenon, it stands to reason that a modification of the equations
may lead to new equations that govern the form of behaviour exhibited by the new
phenomenon. The idea is that the variation of old equations can allow access to new
forms of behaviour not previously captured by physical theory. And particularly
when the phenomena whose form we are modeling are not accessible in experience,
the only epistemic access we have to these forms is through the use of mathematics.

With (distinctly) quantum phenomena being even further removed from experi-
ence than those of optics and electromagnetism, the reliance on abstract mathemat-
ical analogy became even more important for discovering quantum theories. Here
once again, however, strategies of mathematical analogy are rational and natural-
istically justifiable provided that we regard the aim of these strategies as accessing
new forms of behaviour not accessible to current physical theory.

Consider Schrödinger’s derivation of (2.4) discussed above in this connection.
He begins with the assumption that under certain circumstances a quantum parti-
cle can be described as a wave of the form (2.1), an assumption Steiner admits had
physical justification [25, p. 79]. Differentiation of this wavefunction together with
an analogy between its governing PDE and the classical expression for the energy
then led to Schrödinger’s equation (2.4). Contrary to Steiner’s implications, how-
ever, the argument does not require the abandonment of fixed energy in a way that
is contradictory or conceptually problematic. The move from the assumption of a
wavefunction of form (2.1) with constant energy E permits differentiation to obtain
(2.3). Replacement of E by the operator from the governing wave equation (2.2)
for the initially assumed wavefunction (2.1) then yields the Schrödinger equation
(2.4). All of this is rigorous and at fixed energy, as Steiner admits, since it simply
requires a time-varying wavefunction with fixed energy, as in (2.1).
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The importance of this strategy for Schrödinger is that it allowed the extension
of the governing equation (2.2) for the syncronic situation to the equation of mo-
tion (2.4) for the corresponding diachronic situation. Once this equation has been
reached, it is natural for a strategy of discovery of laws governing new phenomena
that we suppose that this equation is valid in cases beyond the special one of the
solution (2.1) that was used to obtain it. Thus, it is only by interpreting (2.4) as
generally valid, or adopting it as an ansatz that (2.4) is generally valid, that per-
mits additional solutions with non-constant energy. Furthermore, the superposed
solutions this general validity thereby allows are actually characteristic of quantum
phenomena, which indicates the nature of the discovery that had been made. This
leads us to a key point: analogies based on variation can, and must if a discovery is
to be made, lead to new behaviour. Thus, interpreting strategies of mathematical
analogy in theory discovery as part of a naturalistically justified tactic for find-
ing new forms of behaviour and the laws that govern them, the generalization step
that Steiner finds naturalistically problematic is actually just the sort of variational
strategy needed here to extend our understanding of nature.

Thus, we see that it is the quantum-classical analogies (E → i~ ∂
∂t ,p→ i~∇) to

access a new equation of motion for dynamical quantum phenomena together with
the assumption that this equation applies generally that really drive the reasoning
in Schrödinger’s argument. So provided that these analogies can be understood as
supporting the adaptation of classical equations of motion to quantum phenom-
ena, involving a significant change in scale, then Schrödinger’s analogical strategy
is quite naturally comprehended as an extension of the analogical methods used in
optics and electrodynamics, only in the interest of a much more extreme extension
of physical theory. Indeed, there is a justification for these analogies in terms of
generators of canonical transformations in Hamiltonian mechanics, which is what
actually provided the central background framework to support the extension of
classical theory to quantum phenomena (see [10], chapter 9).7

We also saw above that these same quantum-classical analogies drove the ar-
gument Dirac provides to derive his equation for the electron. This argument falls
in Steiner’s particularly problematic class of “formalist” strategies, since it is based
on the form of the relativistic energy equation (2.5). The symbols used are clearly
irrelevant to the analogy; what matters is the relationship between the physical
quantities of energy, momentum and mass that the equation expresses. Given that
this is a relativistic expression for energy, we would expect a relativistic theory to
satisfy it. But what kinds of mathematical structures E, p and m refer to need
not necessarily matter, provided that the structures can be interpreted in terms
of energy, momentum and mass in such a way that they are related according to
(2.5). Indeed, it is not unreasonable to expect that a successful extension of phys-
ical theory to relativistic electrons would require new mathematical structures to
characterize their behaviour.8 Understood in this way, Dirac’s anstaz is not purely

7Note that it is more rigorous analogies based on converting Poisson brackets to commutation
relations, or recovering Poisson bracket relations from commutation relations in a classical limit,

that ultimately justified the “correspondence principle” implied by the analogies (E → i~ ∂
∂t

,p →
i~∇) [10, p. 390].

8I mean here new to physics and not necessarily new to mathematics.
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“formalistic” and is reasonable in the interests of a search for equations of motion
that characterize the behaviour of the electron. Furthermore, if we understand this
episode as a successful search for such an equation that encodes behaviour in a hith-
erto inaccessible level of phenomena, then it is considerably less mysterious, though
certainly still surprising, that finding the equation that encodes the behaviour of
such phenomena also reveals new phenomena that occur at that level, such as the
existence of antimatter.

The validity of the argument that the kinds of mathematical analogies used to
discover quantum theories are rational and naturalistic when we adopt a formal-
phenomenological interpretation of physical laws depends essentially on it being
the case that quantum phenomena are forms of behaviour, just as classical phe-
nomena characterized by differential equations are. As has been mentioned, the
phenomenological theories of the seventeenth to nineteenth centuries clearly do not
provide laws of interaction for entities, since matter is now known (post Perrin) to
not be continuous. Thus, a formal-phenomenological interpretation of phenomeno-
logical theories, including theories in wave optics and electromagnetism, is quite
natural given the above considerations. Yet, quantum theories, which I am arguing
were developed by varying abstract forms of behaviour, are sometimes taken to
magically(!) reveal the fundamental ontology of the world—a radical shift from
phenomenology to ontology using the same variety of discovery strategy—variation
of equations and their solutions. The continuity of analogical strategies in theory
discovery in physics therefore suggests that quantum phenomena are forms of be-
haviour (of matter-energy stuff), so that the abstract form of quantum phenomena
can be characterized mathematically, just as classical phenomena are.

There are, however, deeper physical reasons to suppose that quantum phe-
nomena, including all the particles of the Standard Model of particle physics, are
actually forms of behaviour (of matter-energy) and not things. Halverson and
Clifton [14], building on results from Malament [21], have provided rigorous “no-
go theorems” that rule out any particle ontology in a relativistic quantum theory.
They even rule out a localizable particle ontology supervenient on fundamental
fields in quantum field theory. Thus, it turns out to not be possible to interpret
the particles of the Standard Model as actual entities. Halverson and Clifton show,
however, that it is possible to have a relativistic quantum field theory that, for all
practical purposes, has field excitations that behave like localizable particles, therby
explaining the appearance of particles empirically. Thus, we have rigorous results
that show that what may seem to us distinctly as particles, viz., electrons, protons,
positrons, etc., are merely forms of behaviour of matter-energy-stuff, whatever that
may be, under certain measurement conditions.

The no-go results cited above were originally taken to support a field ontology,
but it is now known ([2],[13]) that even natural field ontologies are not possible
in quantum field theory.9 Thus, despite a strong desire and considerable effort
to establish some fundamental ontology, there is strong evidence that even our

9Lupher [20] shows that in the context of algebraic quantum field theory an ontology of
“smeared” fields is possible. But even if an ontology is consistent with a given theory, this does

not necessarily give us reason to believe that it is veridical (see, e.g., [8]).
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most foundational theories establish only new levels of phenomenology, forms of
behaviour at different scales of space, time and energy. This conclusion is in line
with the view, held by some, that there will never be a fundamental theory and
that all physics provides access to are effective forms of behaviour at a given scale
(see [17] for a discussion of the issues underlying this debate).

We are now in a position to consider my argument concerning the physical basis
of mathematical analogy in theory discovery. In the case of the use of strategies of
structural analogy in theory discovery, we can understand the mathematical struc-
tures determined by differential equations (individual solutions, invariants, flows,
etc.) as abstract representations of forms of behaviour that phenomena can exhibit
under certain conditions. So it is rational strategy to vary the abstract forms of
behaviour (by varying the structures picked out by the equations) of empirically
successful theories in order to extend theories to new phenomena or new scales.
The physical basis for this idea is that, on a formal-phenomenological view of theo-
ries, physical theories can be understood as all describing the same stuff but simply
different modes of it at different scales and under different conditions. Therefore,
varying the structures picked out by equations, in a manner consistent with a change
of mode, scale, or conditions, can allow the description of new forms of behaviour.

In cases of the use of strategies of syntactic analogy in theory discovery, such
strategies can be rational on account of the fact that we can understand the al-
gebraic form of differential equations as covarying with its mathematical interpre-
tation in terms of geometric or topological spaces, the structures of which are the
abstract representations of forms of physical behaviour. As a result, the algebraic
form can encode important relationships between physical quantities that we ex-
pect, on physical grounds, to be preserved or varied in a shift to new phenomena.
This can be construed as an algebro-geometric reading of the equations, so that
reasoning based on algebraic form is not actually purely syntactic as a result of the
covariation of the algebraic form and its geometric and topological interpretation.

Moreover, by varying the old equations we ensure that the old equations are
recovered by reversing or undoing the variation, along with their physical meaning
and the empirically demonstrated forms of behaviour that they encode. In this way,
the equations of the old theory act as a surrogate for agreement with experiment.
This is because by showing that one recovers the equations of an old theory, either
directly or in an appropriate limit, one also shows that the new theory exhibits
(exactly or effectively) the same forms of behaviour under the conditions covered
by the old theory.

In this way, then, the strategies of both structural and syntactic analogy can
be understood to have a sound physical basis. For strategies of variation to be suc-
cessful, a definite interpretational framework within which the structural variation
is understood to occur is required. This has been ensured since the establishment of
axiomatic set theory as a foundational framework for mathematics. The universal-
ity of ideal forms of description in classical sets ensures the existence of structures
that can extend known physical forms of behaviour to new modes, scales or con-
ditions. Thus, the key requirement of a strategy of discovery is that it provide a
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means of manipulating the algebraic form of equations known to be valid, imply-
ing covariation of the geometric and topological interpretation of the equations, in
order to locate forms in the universe of sets that capture the form of behaviour of
phenomena in some new mode, under different conditions, or at different scales.
But this is precisely what the “Pythagorean” and “formalist” strategies can be
understood to accomplish when we adopt a formal-phenomenological view of the
knowledge that physical theories provide. Seen in this new light, a strong case can
be made that the large body of examples of structural and syntactic analogy in
theory discovery in modern physics are actually examples of a naturalistic strategy
of discovery of new theories. Moreover, such strategies are all we have to work with
when dealing with phenomena that we can only access or understand through the
use of equations and mathematical structures. Therefore, though these achieve-
ments and discoveries in twentieth century modern physics are marvellous, striking
and surprising, they are certainly not magical or inexplicable.
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